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where fj(p) is defined in (6), to an arbitrary precision. 
Real data, however, are subject to a statistical uncer- 
tainty, and it is pointless to demand agreement that 
is more precise than this uncertainty. Previously 
described procedures (e.g. Livesey & Skilling, 1985) 
for finding a maximum entropy distribution have 
defined the set of feasible points by a constraint of 
the form Y'.{[ Fobs(hi) - fj(p) ]/%}2= m, where % is 
the standard deviation of Fobs(hi) and the sum is 
over m reflections. This constraint contains nothing 
that requires the quantities within the braces to have 
a distribution that in any way resembles a normal 
distribution, and, further, has resulted in problems 
in computation. By contrast, the lack of precision in 
the data is relevant to the procedure described here 
only in the definition of the stopping rule. Refinement 
can continue until [IFobs(bj)l-IX(o)l]2/&< 1 for all j. 

It can be shown (Luenberger, 1984) that any set of 
starting phases will lead to a unique maximum 
entropy map. As Bricogne (1984) has shown, 
however, different sets of starting phases may lead to 
different maps, each of which is equally consistent 
with the data. In these circumstances the total entropy 
of the map provides a criterion for choosing among 
different possible sets of starting phases. 

The entropy maximization procedure described 
here is a means of finding an everywhere-positive 
electron distribution for which the amplitude of the 
structure factor, I(exp (27rih.r)], is equal to  [Fobs(h) I 
for an arbitrarily large set of reflections. It does not, 
however, make any use of the fact that a crystal is 
composed of atoms that have definite well known 
physical and chemical properties. It is thus a tool for 
obtaining a map into which an atomic model may be 
fitted, with subsequent refinement by least-squares 
methods. If non-negativity of electron density is a 
sufficient condition to determine a unique atomic 
structure by direct methods (Woolfson, 1987, and 
references therein), it follows logically that entropy 
maximization, which is a stronger condition, will find 

the same atomic structure. A characteristic of the 
maximum entropy distribution is that it maximizes 
the minimum density in the unit cell, thereby minimiz- 
ing the probability that some reflection in the 
unmeasurable region of reciprocal space will have an 
amplitude for which there is no phase that will not 
cause the density at some point to be negative. 
Maximum entropy is not a necessary condition for 
an acceptable structure, so structures whose entropies 
are far from the global maximum cannot be ruled 
out. Nevertheless, it is at least a plausible conjecture 
that, in a centrosymmetric structure, the sign combi- 
nation for the strongest reflections that has the highest 
entropy is likely to be the correct one, and that, in a 
non-centrosymmetric structure, the correct set of 
phases will give a distribution that has an entropy 
close to the maximum. Maximum entropy is an 
efficient way to express the mutual phase implications 
of a large set of amplitudes simultaneously. 

References 

BRICOGNE, G. (1984). Acta Cryst. A40, 410-445. 
COLLINS, D. M. (1982). Nature (London), 298, 49-51. 
GILL, P. E., MURRAY, W. & WRIGHT, M. M. (1981). Practical 

Optimization. New York: Academic Press. 
JAYNES, E. T. (1979). The Maximum Entropy Formalism, edited 

by R. D. LEVINE & M. TRIBUS, pp. 15-118. Cambridge, MA: 
Massachusetts Institute of Technology. 

LIVESEY, A. K. & SKILL1NG, J. (1985). Acta Cryst. A41,113-122. 
LUENBERGER, D. G. (1984). Linear and Nonlinear Programming. 

Reading, MA: Addison Wesley. 
PRINCE, E. (1982). Mathematical Techniques in Crystallography 

and Materials Science. New York: Springer-Verlag. 
PRINCE, E., SJOLIN, L. & ALENLJUNG, R. (1988). Acta Cryst. 

A44, 216-222. 
SHANNON, C. E. (1948). Bell Syst. Tech. J. pp. 379-423,623-656. 
SHORE, J. E. & JOHNSON, R. W. (1980). IEEE Trans. Inf. Theory, 

IT-26, 26-37; IT-29, 942-943. 
STEWART, G. W. (1973). Introduction to Matrix Computations. 

New York: Academic Press. 
W1LKINS, S. W., VARGHESE, J. N. & LEHMANN, M. S. (1983). 

Acta Cryst. A39, 47-60. 
WOOLFSON, M. M. (1987). Acta Cryst. A43, 593-612. 

Acta Cryst. (1989). A45, 203-208 

The Estimation of Triplet Invariants from Multi-Wavelength Data 

BY E. A. KLOP, H.  KRABBENDAM AND J. KROON 

Laboratorium voor Kristal- en Structuurchemie, RUksuniversiteit, Padualaan 8, 3584 CH Utrecht, 
The Netherlands 

(Received 16 May 1988; accepted 28 September 1988) 

Abstract 

A two-step procedure is presented for the estimation 
of triplet invariants from multi-wavelength data. In 
the first step wavelength-independent structure-factor 
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magnitudes of both the total structure and the light- 
atom substructure, together with associated structure- 
factor phase differences, are calculated explicitly via 
a modified Singh & Ramaseshan [Acta Cryst. (1968), 
B24, 35-40] procedure. In the second step these 

O 1989 International Union of Crystallography 



204 TRIPLET INVARIANTS FROM MULTI-WAVELENGTH DATA 

quantities are employed as conditional information 
in the probability distribution of a triplet invariant 
which can be derived from Hauptman's [Acta Cryst. 
(1982), A38, 289-294] joint probability distribution 
for an isomorphous pair of structures. Test calcula- 
tions on the structure of the iron-containing protein 
ferredoxin show the feasibility of the procedure. 

Introduction 

Karle (1984) proposed to estimate triplet phase 
invariants via an algebraic analysis of multi- 
wavelength data. By use of a set of simultaneous 
equations he showed that it is possible to calculate 
wavelength-independent structure-factor magnitudes 
of the substructure formed by the anomalous scat- 
terers and of the substructure formed by the non- 
anomalously scattering atoms, as well as phase 
differences associated with the phases of these struc- 
ture factors. Triplet invariants are subsequently esti- 
mated under the assumption that the triplet invariants 
of the anomalous scatterers are close to zero. 

In the present paper we will estimate triplet 
invariants of the total structure via a probability 
distribution in which wavelength-independent struc- 
ture-factor magnitudes and phase differences calcu- 
lated from multi-wavelength data are used as condi- 
tional information. We will use a modified version of 
the Singh & Ramaseshan (1968) method to obtain 
wavelength-independent quantities explicitly. The 
procedure has been tested using artificial two- 
wavelength diffraction data of the protein ferredoxin. 

Definitions 

F~ Structure factor for reflection hi at wavelength 
Aj, not necessarily on absolute scale. [ F ~ -  
F(hi, Aj).] 

F~ Complex conjugate of the structure factor for 
reflection - h i  at wavelength Aj, on the same 

+ 
scale as F 0. [ F ~ -  F*(-h~, Aj).] 

FiN Contribution to F~ based on the normal parts 
of the scattering factors of all atoms (including 
anomalously scattering atoms) on absolute 
scale. 

+ 

F~ Contr ibut ion to F 0 of the light atoms (i.e. 
the non-anomalously scattering atoms) on 
absolute scale. 

A subscript i denotes the reciprocal vector hi. Other 
quantities are defined in the text. 

The procedure 

In a multi-wavelength experiment magnitudes F~ 
and ]F~] ( j =  1 , . . . ,  U) can be obtained from data 

collected on a crystal containing anomalous scat- 
terers. Here U is the number of wavelengths. These 
magnitudes may be used to calculate wavelength- 
independent quantities IF,~I, IF[I and u, explicitly as 
will be shown below. The doublet invariant ui is 
defined as q~iN-q~ where q~iN and q~ are the phases 
of FiN and F~ respectively. 

Subsequent normalization of IFUI and ]F,~I yields 
[E~ and lEVI, written as S; and T~ respectively. Using 
Si, T~ and u~ (i = 1, 2, 3), subject to h l + h 2 + h 3 = 0 ,  as  
conditional information, the conditional probability 
distribution P[~N[S,,  T~, ui (i = 1, 2, 3)] of the triplet 
invariant @N = ~01N+ q~v+ q~v may be employed for 
the estimation of triplet invariants. This distribution 
can be expressed as 

p[q~N[&, L, vi ( i=  1,2,3)] 

= [27rio(K)] -1 exp [K cos (~N _ ~:)] (1) 

where K and ~: follow from 

and 

Kcos~ :=X Ks in~ :=Y K > 0  

X = 2/3oS1S2S 3 + 2/31( TIS2S3 cos  ~'1 

+ S, T2S3 cos 1,2+ $1S2T3 cos u3) 

+ 2/32[ TI TzS3 cos  ( 1,'1 + v2) 

+ T I S z T  3 cos  (1.,1 + ~'3) 

+ Sl T2 T3 cos ( ~2 + ~.,)] 

+ 2/33 T, T2 7"3 cos ( v, + u2 + u3) 

Y = 2/31( T1S2S3 sin v~ + S~ T2S3 sin v2 

+$1S2T3 sin v3) 

+ 2/32[ 7"1 T2S3 sin ( l,, + z,2) 

+ T~S2T3 sin (~q+ ~'3) 

+ S, 7"2 T3 sin ( 1,2 + z,3)] 

+ 2133 T1 T2 7"3 sin ( l,i + z,2 + ~'3). 

Io is the modified Bessel function of the first kind 
and of order zero. This distribution can be obtained 
from Hauptman's (1982a) joint probability distribu- 
tion [equation (3.4)] in the same way as equation 
(15) of Klop, Krabbendam & Kroon (1987) or 
alternatively directly from that equation (15) by 
analogy. Although the present notation differs from 
that used in the latter paper, both notations coincide 
if the definitions of the f structure and g structure 
are interchanged in the latter paper, so that the f 
structure includes the heavy atoms and the g structure 
does not. 

Since the light-atom structure is part of the total 
structure the coefficients /3o, /3,, /32 and /33 defined 
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by Hauptman (1982a) are simplified to 

0"3 -- r3 
13o = (1 - a2) 3 o -3/2 

13, = -~#o  

/32= a2,eo 

/33 = [ r3o-32 - -  3 T3o-  3 T 2 + 3 '7"30"2"22 - -  0 " 3 , 3 ]  

x [( 1 - { ~ 2 ) 3 T 3 / 2 0 " 3 ]  - !  

where 
N N 

m, = g (£)x  ~ =  Z' ( £ F  
j = l  j = l  

and oe as defined by Hauptman (1982a) is simplified 
to 

O~ = (7"2 /0"2)  1/2 

N is the total number of atoms in the unit cell. The 
superscript (') specifies that the summation is restric- 
ted to the non-anomalous scatterers. 

The calculation of wavelength-independent quantities 

The calculation of wavelength-independent quan- 
tities from multi-wavelength data was advocated by 
Karle (1980, 1984). In this section we will present the 
approach of Singh & Ramaseshan (1968) modified 
to include scale factors and to obtain explicit 
expressions for IF~ ,  IF/L and the phase difference 
vi. It is assumed that the anomalous scatterers are 
identical. 

.1/2 be the local scale factor to put IF~[ and Let C ij 
I FTjl on an absolute scale, and let G~ be defined as 

N 

Gi = ~," nkTk exp (27rihi.rk), 
k = l  

where (") specifies that the summation is restricted to 
the anomalous scatterers, nk is the occupation factor 
of atom k and Tk is its isotropic temperature factor. 
If f~ and f j '  are the real and imaginary parts of the 
scattering factor of the heavy atoms at wavelength Aj 
we have 

c ' / 2 ~ + = F ~ + ( f ~ + i f j ' ) G ,  ( j = l ,  U) ij r i j  ' '  " ,  

= [ ( a , + f j ) + i ( b , ± f ; ) ] G i  G i # O  

where ai + ibi - FiN/Gi.  
So for Gi # 0, 

c u l F ~ 2 = [ ( a , + f ~ ) 2 + ( b , ± f ~ ) 2 ] g ~  (2a, b) 

where & is the magnitude of G~. Now, let 

AI u -  F ~ a - F ~ 2  

and 

Mu = ( FTjl 2 + IF; r ) /2 .  

Adding and subtracting the two equations (2a) and 
(2b) leads to 

- -  ~"rt2-~ 2 c u M o = [ ( a i + f ~ ) 2 + b 2 ~ j j  Ig, (3) 

= 4 f i b , g , .  (4) coAi u ,, 2 

From (4) it follows that 

c i j=( f j 'AI i , / fTAI i j )Cn  for A I u # O .  (5) 

For the two-wavelength case (U = 2), the quantities 
ai and bi are subsequently eliminated and a quadratic 
equation in g~ is obtained with solutions 

2 gi,± = ( Q J  P) + ( Q ~ -  R,P) ' /2 /  P. (6) 

The parameters P, Qi and Ri are 

p = [(Af,)2 _ (f~2 _f~2)]2 + 4(Af')2f~ 2 

Qi = (Af')2(ci, Mi, + ci2Mi2) 

+ (f,(2 _ f~2)(c i ,  M i , -  ci2Mi2) 

Ri = ( ci,Mi, - c,2Mi2) 2 + p2( df , )2  (7) 

with p~ and Af' defined as 

p i - c i2aL2 /2 f '~  and Af '=-- f~- f '2 .  (8) 

The scale factor c u of reflections for which AI  0 # 0 
can be expressed in terms of cil via (5). In order to 
reduce the statistical error in the scale factor for 
reflection hi one may calculate a scale factor by 
averaging local scale factors of reflections in a region 
in reciprocal space that contains the reciprocal-lattice 
point corresponding to hi. This procedure can be used 
to calculate the scale factor of centrosymmetrical and 
pseudo-centrosymmetrical reflections. Such reflec- 
tions have d I  u = O, so (5) cannot be used. If the data 
are free of systematic errors, global scaling (Matthews 
& Czerwinski, 1975) can be applied: c u = cj. 

For the parameters ai and b~ we obtain 

ai.± . . . .  { C i l M i l  c i 2 M i 2  [ ( f ' 1 2 - f t 2 2 ) + ( f ~  2 f2u2 ) ]g i ,±}2  

t 2 -1  x (2Af gi,±) (9a) 

bi,± = pJ2gi2,± (9b) 

by using (3), (4) and (8). For each reflection two 
solutions are obtained, viz 

ai,_, bi_, gi,- and ai.+, b~.+, gi,+ 

analogous to the heavy-atom lower estimate (HLE) 
and heavy-atom upper estimate (HUE) in protein 
crystallography for single isomorphous replacement 
combined with anomalous scattering (SIRAS). In the 
two-wavelength case, as in the SIRAS case, the HLE 
solution (i.e. a~,_, b i - ,  &,-) is chosen as the correct 
one. (There is no ambiguity if U-> 3.) 

Equation (6) was derived for & # 0. If g~ = 0, we 
have ~url/al::+--u = FiN so Mil = M~2 (if there are no scaling 
errors) and AI u = 0  so R~=0 and, by (6), & _ = 0 ,  
&+ = 2 Q J P .  Hence (6) is also valid for gi =0.  
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Omitting the subscripts (±), we have by definition 

ai + ibi = F ~ /  Gi, 
SO 

2 1 / 2 ~  IF~l=(a2,+b,) g,. (10) 

Let f "  be the normal part of the heavy-atom scatter- 
ing factor and F ~ - f n G ~ ;  then 

F ~ =  F ? -  F~  = ( a , - f n  + ib,)G, 
SO 

] F ~ l = [ ( a ~ - f " ) 2 + b ~ ] t / 2 g , .  (11) 

The phase difference u, is easily obtained as the 
argument of FiN/F~: 

2 2 FiN/F~  = [ a, + b, - a cf H - ib , f  H ] 

× [(a, _ f n  )2 + b~]-l (12a) 

u ; = ~ o ~ - ~ o ~ = A r g ( F ~ / F ~ ) .  (12b) 

If c~l is unknown then g~/~1/2 _1/2 IF, l/t.-il and[F~l/-1/2c,' 
are obtained by application of (6), (10) and (11), i.e. 
amplitudes are obtained on the relative scale of the 
diffraction data collected at wavelength A I instead of 
on an absolute scale. This has no disturbing effect 
either on the application of direct methods or on the 
application of Patterson methods. In the former case 
normalization of data in the usual way brings the 
calculated values of IF, I and IF, I on to an absolute 
scale. Note that a, and b~ and hence u are independent 
of c~1, Le. insensitive to scaling errors if (5) is used. 

Practical application 

The procedure was tested on artificial two-wavelength 
diffraction data of the iron-containing protein fer- 
redoxin (Sieker, Adman & Jensen, 1972) which crys- 
tallizes in P212121 with a=30.52,  b=37.75,  c=  
39.7 A and molecular weight Mr-6000.  The eight 
iron atoms in the molecule, located in two Fe-S 
clusters, are assumed to be the only anomalous scat- 
terers. When synchroton radiation is used an f '  value 
of about -10  and an f "  value of about +6 can be 
obtained for Fe by tuning the wavelength around its 
K edge (Phillips et al., 1977). The artificial data 
consist of structure factors calculated using the par- 
ameters listed in Table 1. Practical tests of the pro- 
cedure were made without and with the introduction 
of errors. In the latter case random errors normally 
distributed with standard deviation cr = 0"01,0.02 and 
0.04 are independently applied to each structure fac- 
tor. The R factors in Table 1 are defined as 

{ ] F~(error)] + ]F~(error)[} 
R j -  

Y (IF I+IF, I) 
where F~(error) is the random error applied to F~. 

In the calculation of wavelength-independent 
quantities from the artificial diffraction data a reflec- 
tion was rejected if: (a) g~._ is imaginary; (b) g~._ < 
2.0; or (c) g~._ > 32.0 (32 Fe atoms in the unit cell). 

Table 1. Parameters used to calculate two-wavelength 
diffraction data 

Anomalous  scatterers: Fe 
B (overall) = 10.00 ~2 
Resolution: 2 
3328 reflections 
A~ = 1.541 ,~ 
A2 = 1.743 ,~ 

f'~ = -1"18 f~' =3"20 c, = 1"0 
f ' = - 1 0 " 0 0  f "  =6"00 c~= 1"0 

0"(%) R 1 (%) R 2 ( % )  
l 0.74 0.72 
2 1.48 1.44 
4 2"95 2"87 

Table 2 lists the number of reflections used in the 
calculations for each chosen standard deviation 
together with the following R parameters: 

F N _ N 
~ g i , - - - g i ,  true ~ i , -  F i ,  true 

Rg - RFN -- F N X g,.,roo Zl ,.,rool 

EIFLool 
and the average error (u(error)) in the phase differen- 
ces. It turns out that the calculated heavy-atom contri- 
butions g are more sensitive to errors than are the 
calculated magnitudes IFNI and IF£1. The calculation 
of wavelength-independent H LE/H U E quantities is 
an exact algebraic procedure, so the R indices should 
be zero for o =  0.0 if the HLE/HUE ambiguity did 
not exist. The low values of the R indices for o" = 0-0 
suggest that the resolution of this ambiguity by choos- 
ing the HLE solution is a good procedure. The num- 
ber of reflections for which the HUE solution instead 
of the HLE solution is correct is rather small (98 out 
of 2331 reflections for ferredoxin, o-= 0.0). Further- 
more these reflections appear to have small ]FNI 
values (IFNI < 140-6 compared with a maximum IFNI 
of 2181.6). For 319 reflections the HUE solution is 
impossible since g+ > 32.0; for these reflections there 
is no ambiguity. 

After normalization of the IFNI and IFLI values 
obtained by application of (11) and (12), 500 reflec- 
tions with largest I E N I values were used to generate 
Y~2 relationships (see Table 3). Note that triple prod- 
ucts generated from reflections with large I E N I values 
may not always have large K values since K also 
depends on IE tl and u. Therefore retaining only those 
reflections with large E N is a computationally 
efficient but not necessarily optimal procedure. 

Triplet invariants were estimated by application of 
( 1 ) and subsequently sorted on K. Table 4 summarizes 
the results of 8000 invariants with largest K and Table 
5 shows a sample often invariants with their K values. 

Discussion 

The test results in the previous section show that 
triplet invariants can be estimated accurately via the 
probability distribution P[dPNIS,, T,, ~,, (i = 1, 2, 3)] 
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Table 2. The calculation of  wavelength-independent quantities: standard deviation o- of  the error (%), number 
of  reflections, indices Rg, R~:N and RFL (%) and average error (u(error)) in the phase difference u (o) for each 

family of  reflections 

Number of 
Family of reflections g reflections Rg RvN RFL (u(error)) 

Non-centrosymmetric reflections 0 1908 1.46 0-02 0.54 1.5 
1 1897 5.20 0.67 2.29 3.5 
2 1880 8.86 1.31 4.04 5.3 
4 1897 16.76 2.63 7.50 8.9 

Centrosymmetfic reflections 0 423 3.80 0.11 1.83 8.6 
1 422 7.33 0.68 3.88 10.8 
2 , 422 10.89 1.25 5-85 12.9 
4 409 17.66 2-40 9.75 16.2 

All reflections 0 2331 1.96 0.04 0.81 2.8 
1 2319 5-65 0.67 2-63 4.8 
2 2302 9.29 1.30 4.43 6.7 
4 2306 16.95 2.58 7.97 10.2 

Table 3. Minimum value of  500 largest I E N [ magn# 
tudes and number of  relationships 

Minimum IEN[ Number of relationships 
0 1.24 19 458 
1 1.24 19 654 
2 1.24 19 481 
4 1.27 20 047 

Table 4. Average K values, Cochran K values ( kapco) 
(calculated from E N i) and magnitudes of  error in the 

estimated values of  triplet invariants 

T o p  ~ (K) (kapco)  ( ~ ( e r r o r ) )  

1000 0 6.77 0.55 16.0 
1 6.76 0.56 17-0 
2 7.13 0.55 17.7 
4 8.00 0.56 21.1 

2000 0 5.10 0-51 20.7 
1 5.06 0-51 21.2 
2 5.36 0.50 21.8 
4 5-97 0.51 26-9 

8000 0 2.47 0.41 39.6 
1 2.45 0.42 40.8 
2 2.62 0.41 41.8 
4 2.88 0.42 48.1 

Table 5. A sample of  ten triplet invariants (or = O) 

Serial 
number of 
invariant K kapco qb est q~true Error 

1 27-14 0"32 -164 -166 2 
101 10"20 0"43 -11 -17  6 
201 8"37 0.87 75 105 30 
301 7-24 0-74 72 70 2 
401 6"51 0"28 -24  -20  4 
501 5-98 0-41 - 6  -26  20 
601 5"43 0-29 -83 -106 23 
701 5.07 0"42 -50  -66  16 
801 4"78 0.34 24 0 24 
901 4.47 0"53 -58  -88  30 

after calculation of the conditional information from 
two-wavelength data F~ ,  F/~ (j = 1, 2). 

Hauptman (1983) suggested an alternative 
approach in which IF~[, ]F~I ( j = 1 , 2 ) i s  used as 
conditional information after normalization. This 
approach consists of the estimation of 64 (not- 

independent) triplet phases ~1 = ~1,~+ ¢2,1+ ~o3.~, 
f-~2 = ~ -1 .1  -~- ~2.1 -}- ('P3.1 , ~ 3  = ~t~l.2 Jr- (~2.1 -~- (~3.1 , • • " , 

~64 = ~o-1,2+ ~-2.2+ ~o-3,2 (~±ij is the phase of F~) for 
each Y'.2 relationship via 64 twelve-magnitude proba- 
bility distributions Pk[~k E~,  [E~ (i = 1, 2, 3; j -  
1, 2 ) ] ,  k = 1 , . . . ,  64, analogous to the six-magnitude 
probabilistic formulae for the one-wavelength case 
derived by Hauptman (1982b) and Giacovazzo 
(1983). The inevitable approximations involved in 
these extremely laborious derivations pose a serious 
problem since they may restrict the usefulness of the 
phase-determining formulae. On the other hand, 
different types of anomalous scatterers are more easily 
incorporated in the approach suggested by Haupt- 
man. In the two-step procedure described in the pres- 
ent paper the complexity of the problem is greatly 
reduced by the algebraic calculation of wavelength- 
independent data, prior to using direct methods. Fur- 
thermore, since the algebraic pre-processing of the 
data can easily cope with data collected at more than 
two wavelengths (the H L E / H U E  ambiguity is 
removed) the use of 216 (in the three-wavelength 
case) eighteen-magnitude distributions can be 
avoided. 

In the multi-wavelength procedure proposed by 
Karle (1984) solution of a set of linear equations gives 
the heavy-atom contributions together with phase 
differences e~ --- ~ -  ~ff where ~ and ~H are the 
phases of F~ and Fff respectively. Triplet invariants 
are estimated using the relation ~L = 
• H+e~+e2+e3  with ~ H = ~ H + ~ H + ~ 3 n .  If the 
Cochran • value of the heavy-atom contribution is 
large then qb H = 0 so ~ -  = e~ + e2+ e3. The procedure 
described in the present paper differs from Karle's 
procedure in several respects. (i) In the latter pro- 
cedure the set of linear equations is singular in the 
two-wavelength case so that at least three wavelengths 
are required. The former procedure uses non-linear 
equations which can be solved in the two-wavelength 
case as well. (ii) The phase-determining information 
is [FIN], IF~[ and ~ - ~  in the former procedure 
versus gi and e~ in the latter. With one type of 
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anomalous  scatterer, IF~I is uniquely determined by 
IFYl, IF/~I, ~PN--~O~, f~ and f ; ,  but not so, however,  
by gi, ei, f~ and f~'. This suggests that the phase- 
determining information in the former procedure  is 
more powerful  than in the latter. (iii) Triplet 
invariants of  which the contributing reflections have 
small g values cannot  be estimated in Karle 's  pro- 
cedure. However,  in our procedure these invariants 
can also be estimated since for these reflections F N ~- 
F L and v = 0 ,  i.e. (1) can still be used. 

Instead of  using [FNI, IFLI and ~0 N _ ~ L  it is poss- 
ible to use IFNI, I F " I  and N _ q ~ .  or IFLI, I F " I  and 

L H q~ -~o as condit ional  information (after normaliz- 
ation of  the magnitudes) .  With each of  these choices, 
IF?jl is determined if there is one type of  anomalous  
scatterer. Hence with one type of  anomalous  scatterer 
the information contained in IF~I is also present in 
each of the three choices mentioned.  The choice for 
IF~I,  IFLI and N _  L was motivated by the fact 
that it resembles most closely the conditional informa- 
tion used in Haup tman ' s  (1982a) distribution for 
single i somorphous  replacement  from which our 
equation (1) was derived. 

In protein crystal lography it is customary to try to 
solve the heavy-atom structure first from isomorphous  
replacement  data,  often supplemented by anomalous  
dispersion. With mult i-wavelength data it is possible 

tO solve the heavy-atom structure by s tandard  direct 
or Patterson methods using the calculated heavy-atom 
magnitudes g. Subsequently,  with known heavy-atom 
positions, protein structure-factor  phases can be 
determined except for reflections with small heavy- 
atom contributions.  The procedure proposed in the 
present paper  allows accurate  estimation of triplet 
invariants and does not require the positions of the 
heavy atoms. The derivation of s tructure-factor  
phases from these triplet phase invariants will be the 
subject of  a for thcoming paper.  
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Abstract 

Rotation matrices that minimize or maximize the sum of 
the squared distances between corresponding atoms for two 
structures are found using a constrained least-squares pro- 
cedure solved analytically as an eigenvalue problem in 
quaternion parameters. 

Orthogonal transformations have been used widely to com- 
pare molecular structures (Cox, 1967; McLachlan, 1972, 
1979; Rao & Rossmann, 1973; Nyburg, 1974; Hendrickson, 
1979; Kenknight, 1984; Honzatko, 1986; Lesk, 1986). Such 
a transformation superimposes structures to facilitate visual 
comparisons and to give a quantitative measure of shape 
similarity as the root mean square (r.m.s.) deviation of 

distances between corresponding atoms. A prerequisite for 
the comparison is that the atom-atom correspondence has 
been determined between molecules. Then a criterion for 
the best superposition of two molecular structures is that 
the sum of the squared distances between these atoms be 
a minimum. Finding the optimal orthogonal transformation 
requires determination of a rotation matrix R and a transla- 
tion vector that will superimpose two sets of coordinates 
to meet this criterion. To obtain optimal overlap with respect 
to the translation vector the two coordinate sets should first 
have their centroids moved to the origin. The problem of 
finding the rotation matrix, the elements of which are not 
linearly independent, invariably involves some iterative 
optimization procedure, although Kabsch (1976, 1978) 
solves for R by a direct method using Lagrange multipliers 
to impose orthogonality constraints on the transformation 
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